
Politecnico di Milano
Dip. Elettronica e Informazione

Milano, Italy

Anomaly detection through
system call argument analysis

Stefano ZaneroStefano Zanero
Ph.D. Student, Politecnico di Milano

CTO & Founder, Secure Network S.r.l.

Black Hat Briefings – Las Vegas, Nevada, 02/08/06

Presentation Outline

Building a case for Anomaly Detection Systems
Bear with me if you already heard this rant :)
Intrusion Detection Systems, not Software !
Why do we need Anomaly Detection ?

State of the art in host-based anomaly detection
System call sequence analysis (a lot of)
System call argument analysis (a few of)

Combining both, along with other ingredients
Detecting 0-day attacks: hope or hype ?
Conclusions

A huge problem, since 331 b.C.

The defender's problem
 The defender needs to plan for everything… the attacker

needs just to hit one weak point
 Being overconfident is fatal: King Darius vs. Alexander

Magnus, at Gaugamela (331 b.C.)

Acting sensibly is the key (“Beyond fear”, by
Bruce Schneier: a must read!)

 “The only difference between systems that can
fail and systems that cannot possibly fail is that,
when the latter actually fail, they fail in a totally
devastating and unforeseen manner that is
usually also impossible to repair” (Murphy's law
on complex systems)

Murphy says: plan for the worst

The mantra is: plan for the worst (and pray it
will not get even worse than that) and act
accordingly

At the end of the day, we must keep in mind
that every defensive system will, at some time,
fail, so we must plan for failure
 We must design systems to withstand attacks, and fail

gracefully (failure-tolerance)
 We must design systems to be tamper evident

(detection)
 We must design systems to be capable of recovery

(reaction)

Tamper evidence and Intrusion Detection

An information system must be designed for
tamper evidence (because it will be broken into,
sooner or later)

An IDS is a system which is capable of detecting
intrusion attempts on an information system
 An IDS is a system, not a software!
 An IDS works on an information system, not on a

network!

The so-called IDS software packages are a
component of an intrusion detection system

An IDS system usually closes its loop on a
human being (who is an essential part of the
system)

Breaking some hard-to-kill myths

An IDS is a system, not a software
A skilled human looking at logs is an IDS
A skilled network admin looking at TCPdump is an IDS
A company maintaining and monitoring your firewall is
an IDS
A box bought by a vendor and plugged into the network
is not an IDS by itself

An IDS is not a panacea, it’s a component
Does not substitute a firewall, nor it was designed to
(despite what Gartner thinks)
It’s the last component to add to a security architecture,
not the first

Detection without reaction is a no-no
Like burglar alarms with no guards!

Reaction without human supervision is a dream
 “Network, defend thyself !”

Anomaly vs. misuse

 Describes normal behaviour,
and flags deviations

 Uses statistical or machine
learning models of behaviour

 Theoretically able to
recognize any attack, also 0-
days

 Strongly dependent on the
model, the metrics and the
thresholds

 Generates statistical alerts:
“Something’s wrong”

 Uses a knowledge base to
recognize the attacks

 Can recognize only attacks for
which a “signature” exists in
the KB

 When new types of attacks are
created, the language used to
express the rules may not be
expressive enough

 Problems for polymorphism
 The alerts are precise: they

recognize a specific attack,
giving out many useful
informations

Anomaly Detection Model Misuse Detection Model

Misuse detection alone is an awful idea

 Misuse detection systems rely on a knowledge base (think
of the anti-virus example, if it’s easier to grasp)

 Updates continuously needed, and not all the attacks
become known (as opposed to viruses)
A misuse based IDS will not, in general, recognize a
zero-day attack

 Attacks are polymorphs, more than computer viruses
(human ingenuity vs computer program)
Think of ADMutate, UTF encoding...
A misuse based IDS will not, in general, recognize a new way
to exploit an old attack, unless there is an unescapably
necessary characteristic in the attack

 If we need intrusion detection as a complementary mean
to patching and secure design, detecting known attacks is
clearly not the solution

 Traditionally, network based IDS are mostly misuse based

Anomaly Detection, perhaps not better

Task: describe the normal behaviour of a system
Which features/variables/metrics would you use?
Infinite models to fit them

Thresholds must be chosen to minimize false
positive vs. detection rate: a difficult process

The base model is fundamental
If the attack shows up only in variables we discarded,
or only in variations we do not check, we cannot detect it
Think of detecting oscillations when you just check the
average of a variable on a window of time

 In any case, what we get as an alert is “hey,
something’s wrong here”. What? Your guess!

Difficult to be relied upon for automatic defense
(i.e. IPS)

Our approach: unsupervised learning

 At the Politecnico di Milano Performance Evaluation lab we
are working on anomaly-based intrusion detection systems
capable of unsupervised learning

 What is a learning algorithm ?
It is an algorithm whose performances grow over time
It can extract information from training data

 Supervised algorithms learn on labeled training data
“This is a good event, this is not good”
Think of your favorite bayesian anti-spam filter
It is a form of generalized misuse detection

 Unsupervised algorithms learn on unlabeled data
They can “learn” the normal behavior of a system and detect
variations (remembers something … ?)

 We have already presented in past our network based IDS,
we are presenting today our host based IDS

State of the art

 Host-based, anomaly based IDS have a long academic
tradition, and there's a gazillion papers on them

 Let us focus on one observed feature: the sequence of
system calls executed by a process during its life

 Assumption: this sequence can be characterized, and
abnormal deviations of the process execution can be
detected

 Earlier studied focused on the sequence of calls

Used markovian algorithms, wavelets, neural networks,
finite state automata, N-grams, whatever, but just on the
sequence of calls

Markov models comprise other models

 An interesting and different approach was introduced by
Vigna et al. with “SyscallAnomaly/LibAnomaly”, but we'll
see that in due time

Time series learning

A time series is a sequence of observations on a
variable made over some time

 If a syscall is an observation, then a program is
a time series of syscalls

 If our observations are descriptive of the
behavior of systems… attacks probably are
outliers
An outlier is an observation that deviates so much from
other observations as to arouse suspicions that it was
generated from a different mechanism

What is an outlier in a time series ?
Traditional definitions are based on wavelet transforms
but are not adequate for cathegorical values such as ours

Markov chains give us an approach

What is a Markov chain ?

A stochastic process is a finite-state, k-th order
Markov chain if it has:
A finite number of states

The Markovian property (probability of next state
depends only on k most recent states)

Stationary transition probabilities (i.e. they do not
change with time)

Probabilities, in a first-order chain with s states
can be expressed as a matrix with s rows and
cols
In n-th order, with a matrix with s^n rows and cols

Chain is irreducible if all states are reachable
Transient, recurrent and absorbing states

They comprise other models
N-grams are simplified n-th order markov chains

FSA are simplified markov chains (almost ;)

An example of Markov chain

Training a Markov chain

We can compute the likelihood of a sequence in a
model with a simple conditional probability

We can build the model which fits a given
sequence or set of sequences by calculating the
maximum likelihood model, the one which gives
the various observations the maximum probability

Can be done through simple calculations (problem
of null probabilities), or through Bayesian ones

Comparison of probability of sequences of
different length is difficult (can use the logarithm
or other tricks to smooth)

Which Markov chain does this fit ?

Simple answer: you compute the likelihood
 If you need to compare multiple models, this is

more complex
You need to take into account the prior probability, or
probability of the model, since:
P(M|O) = P(O|M) P(M) / P(O)

P(O) is fixed and cancels out, but you usually don't know
P(M): depending on the choice, you can have varying
results

S. Zanero, “Behavioral Intrusion Detection”
explains the trick

Additional thought: HMMs

A Hidden Markov Model is one where we do not
really see the state, but a set of symbols which
can be generated with some probability from each
state

How likely is a given sequence in a HMM?
 the Forward algorithm

What is the most probable “path” for generating a
given sequence?
 the Viterbi algorithm

How can we learn the HMM parameters given a
set of sequences?
 the Forward-Backward (Baum-Welch) algorithm

SyscallAnomaly: analyzing the variables

SysCall Anomaly, proposed by Vigna et al.
Each syscall separately evaluated on 4 separated models

(maximum) string length

Character distribution

Structural inference

Token search

Each model is theoretically interesting, but
exhibits flaws in real-world situations
Structural inference

Realized as a markov model with no probabilities...

Too sensitive !

Token search
No “search”, really: you must predefine what is a token

Again, no probabilities

Our proposal

We evolved the models
Structural inference: abolished (halving false positives...)

Implemented a model for filesystem paths (depth –
structural similarities, e.g. elements in common)

Token Search: probabilistic model
UID/GID specialization, considering three categories:

superuser, system id, regular id

Now, we wanted to add
Correlation among the arguments of a single syscall

Hierarchical clustering algorithm to create classes of use

Correlation among system calls over time
First order Markov model (a Markov chain)

What is clustering ?

Clustering is the grouping of pattern vectors into
sets that maximize the intra-cluster similarity,
while minimizing the inter-cluster similarity

Here “pattern vectors” are the values of various
models

We used a hierarchical agglomerative algorithm
Pick up the two most similar items

Group them

Compute distance from the new group to other groups

Repeat

What is similarity?
Two patterns are similar if they are “close”
We had to define similarity for each model type

e.g. is /usr/local/lib similar to /usr/lib ? And to
/usr/local/doc ?

Results of clustering

The clustering process aggregates similar uses of
a same system call
E.g.: let us take the open syscalls in fdformat:

/usr/lib/libvolmgt.so.1, -rwxr-xr-x
/usr/lib/libintl.so.1, -rwxr-xr-x
/usr/lib/libc.so.1, -rwxr-xr-x
/usr/lib/libadm.so.1, -rwxr-xr-x
/usr/lib/libw.so.1, -rwxr-xr-x
/usr/lib/libdl.so.1, -rwxr-xr-x
/usr/lib/libelf.so.1, -rwxr-xr-x
/usr/platform/sun4u/lib/libc_psr.so.1, -rwxr-xr-x
/devices/pseudo/mm@0:zero, crw-rw-rw-
/devices/pseudo/vol@0:volctl, crw-rw-rw-
/usr/lib/locale/iso_8859_1/LC_CTYPE/ctype,-r-xr-xr-
x

Each of the clusters is a separate type of syscall
(e.g. “open_1”, “open_2”, “open_3”)

A matter of sequence

We can now build a Markov chain which uses as
states the clusters of syscalls, as opposed to the
syscalls per se

We can train the model easily on normal
program executions
Not static analysis, we would include bugs

At runtime we will have three “outlier
indicators”:
The likelihood of the sequence so far

The likelihood of this syscall in this position

The “similarity” of this syscall arguments to the best-
matching cluster

The first is an indicator of likely deviation of
program course, the others are punctual
indicators of an anomaly

So, why don't you have “results” ?!

See my presentation at BH Fed on why the
evaluation of intrusion detection systems is
mostly useless as of now

 I won't claim with you “False Positive Rates” or
“Detection Rates” that I cannot scientifically
back

 I can share with you two interesting results
Firstly, deviation is contextualixed, allowing the analyst
to trace it back to the point of entry

Secondly, abnormalities can be detected with a better
granularity because of the clustering on system calls

Conclusions & Future Work

Conclusions:
IDS are going to be needed as a complementary

defense paradigm (detection & reaction vs. prevention)
In order to detect unknown attacks, we need better

anomaly detection systems
We can successfully use unsupervised learning for

anomaly detection in an host based environment using
System call sequence

System call arguments

Future developments:
Integrating this to become an Intrusion Prevention

system, maybe using CORE FORCE ?
More extensive real-world evaluation on the go
Integration with our network based system

?Any question?Any question?

Thank you!Thank you!

I would greatly appreciate your feedback !

Stefano Zanero
zanero@elet.polimi.it

www.elet.polimi.it/upload/zanero/eng

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

